
Politecnico di Milano
Dip. Elettronica e Informazione

Milano, Italy

Anomaly detection through
system call argument analysis

Stefano ZaneroStefano Zanero
Ph.D. Student, Politecnico di Milano

CTO & Founder, Secure Network S.r.l.

Black Hat Briefings – Las Vegas, Nevada, 02/08/06

Presentation Outline

Building a case for Anomaly Detection Systems
Bear with me if you already heard this rant :)
Intrusion Detection Systems, not Software !
Why do we need Anomaly Detection ?

State of the art in host-based anomaly detection
System call sequence analysis (a lot of)
System call argument analysis (a few of)

Combining both, along with other ingredients
Detecting 0-day attacks: hope or hype ?
Conclusions

A huge problem, since 331 b.C.

The defender's problem
 The defender needs to plan for everything… the attacker

needs just to hit one weak point
 Being overconfident is fatal: King Darius vs. Alexander

Magnus, at Gaugamela (331 b.C.)

Acting sensibly is the key (“Beyond fear”, by
Bruce Schneier: a must read!)

 “The only difference between systems that can
fail and systems that cannot possibly fail is that,
when the latter actually fail, they fail in a totally
devastating and unforeseen manner that is
usually also impossible to repair” (Murphy's law
on complex systems)

Murphy says: plan for the worst

The mantra is: plan for the worst (and pray it
will not get even worse than that) and act
accordingly

At the end of the day, we must keep in mind
that every defensive system will, at some time,
fail, so we must plan for failure
 We must design systems to withstand attacks, and fail

gracefully (failure-tolerance)
 We must design systems to be tamper evident

(detection)
 We must design systems to be capable of recovery

(reaction)

Tamper evidence and Intrusion Detection

An information system must be designed for
tamper evidence (because it will be broken into,
sooner or later)

An IDS is a system which is capable of detecting
intrusion attempts on an information system
 An IDS is a system, not a software!
 An IDS works on an information system, not on a

network!

The so-called IDS software packages are a
component of an intrusion detection system

An IDS system usually closes its loop on a
human being (who is an essential part of the
system)

Breaking some hard-to-kill myths

An IDS is a system, not a software
A skilled human looking at logs is an IDS
A skilled network admin looking at TCPdump is an IDS
A company maintaining and monitoring your firewall is
an IDS
A box bought by a vendor and plugged into the network
is not an IDS by itself

An IDS is not a panacea, it’s a component
Does not substitute a firewall, nor it was designed to
(despite what Gartner thinks)
It’s the last component to add to a security architecture,
not the first

Detection without reaction is a no-no
Like burglar alarms with no guards!

Reaction without human supervision is a dream
 “Network, defend thyself !”

Anomaly vs. misuse

 Describes normal behaviour,
and flags deviations

 Uses statistical or machine
learning models of behaviour

 Theoretically able to
recognize any attack, also 0-
days

 Strongly dependent on the
model, the metrics and the
thresholds

 Generates statistical alerts:
“Something’s wrong”

 Uses a knowledge base to
recognize the attacks

 Can recognize only attacks for
which a “signature” exists in
the KB

 When new types of attacks are
created, the language used to
express the rules may not be
expressive enough

 Problems for polymorphism
 The alerts are precise: they

recognize a specific attack,
giving out many useful
informations

Anomaly Detection Model Misuse Detection Model

Misuse detection alone is an awful idea

 Misuse detection systems rely on a knowledge base (think
of the anti-virus example, if it’s easier to grasp)

 Updates continuously needed, and not all the attacks
become known (as opposed to viruses)
A misuse based IDS will not, in general, recognize a
zero-day attack

 Attacks are polymorphs, more than computer viruses
(human ingenuity vs computer program)
Think of ADMutate, UTF encoding...
A misuse based IDS will not, in general, recognize a new way
to exploit an old attack, unless there is an unescapably
necessary characteristic in the attack

 If we need intrusion detection as a complementary mean
to patching and secure design, detecting known attacks is
clearly not the solution

 Traditionally, network based IDS are mostly misuse based

Anomaly Detection, perhaps not better

Task: describe the normal behaviour of a system
Which features/variables/metrics would you use?
Infinite models to fit them

Thresholds must be chosen to minimize false
positive vs. detection rate: a difficult process

The base model is fundamental
If the attack shows up only in variables we discarded,
or only in variations we do not check, we cannot detect it
Think of detecting oscillations when you just check the
average of a variable on a window of time

 In any case, what we get as an alert is “hey,
something’s wrong here”. What? Your guess!

Difficult to be relied upon for automatic defense
(i.e. IPS)

Our approach: unsupervised learning

 At the Politecnico di Milano Performance Evaluation lab we
are working on anomaly-based intrusion detection systems
capable of unsupervised learning

 What is a learning algorithm ?
It is an algorithm whose performances grow over time
It can extract information from training data

 Supervised algorithms learn on labeled training data
“This is a good event, this is not good”
Think of your favorite bayesian anti-spam filter
It is a form of generalized misuse detection

 Unsupervised algorithms learn on unlabeled data
They can “learn” the normal behavior of a system and detect
variations (remembers something … ?)

 We have already presented in past our network based IDS,
we are presenting today our host based IDS

State of the art

 Host-based, anomaly based IDS have a long academic
tradition, and there's a gazillion papers on them

 Let us focus on one observed feature: the sequence of
system calls executed by a process during its life

 Assumption: this sequence can be characterized, and
abnormal deviations of the process execution can be
detected

 Earlier studied focused on the sequence of calls

Used markovian algorithms, wavelets, neural networks,
finite state automata, N-grams, whatever, but just on the
sequence of calls

Markov models comprise other models

 An interesting and different approach was introduced by
Vigna et al. with “SyscallAnomaly/LibAnomaly”, but we'll
see that in due time

Time series learning

A time series is a sequence of observations on a
variable made over some time

 If a syscall is an observation, then a program is
a time series of syscalls

 If our observations are descriptive of the
behavior of systems… attacks probably are
outliers
An outlier is an observation that deviates so much from
other observations as to arouse suspicions that it was
generated from a different mechanism

What is an outlier in a time series ?
Traditional definitions are based on wavelet transforms
but are not adequate for cathegorical values such as ours

Markov chains give us an approach

What is a Markov chain ?

A stochastic process is a finite-state, k-th order
Markov chain if it has:
A finite number of states

The Markovian property (probability of next state
depends only on k most recent states)

Stationary transition probabilities (i.e. they do not
change with time)

Probabilities, in a first-order chain with s states
can be expressed as a matrix with s rows and
cols
In n-th order, with a matrix with s^n rows and cols

Chain is irreducible if all states are reachable
Transient, recurrent and absorbing states

They comprise other models
N-grams are simplified n-th order markov chains

FSA are simplified markov chains (almost ;)

An example of Markov chain

Training a Markov chain

We can compute the likelihood of a sequence in a
model with a simple conditional probability

We can build the model which fits a given
sequence or set of sequences by calculating the
maximum likelihood model, the one which gives
the various observations the maximum probability

Can be done through simple calculations (problem
of null probabilities), or through Bayesian ones

Comparison of probability of sequences of
different length is difficult (can use the logarithm
or other tricks to smooth)

Which Markov chain does this fit ?

Simple answer: you compute the likelihood
 If you need to compare multiple models, this is

more complex
You need to take into account the prior probability, or
probability of the model, since:
P(M|O) = P(O|M) P(M) / P(O)

P(O) is fixed and cancels out, but you usually don't know
P(M): depending on the choice, you can have varying
results

S. Zanero, “Behavioral Intrusion Detection”
explains the trick

Additional thought: HMMs

A Hidden Markov Model is one where we do not
really see the state, but a set of symbols which
can be generated with some probability from each
state

How likely is a given sequence in a HMM?
 the Forward algorithm

What is the most probable “path” for generating a
given sequence?
 the Viterbi algorithm

How can we learn the HMM parameters given a
set of sequences?
 the Forward-Backward (Baum-Welch) algorithm

SyscallAnomaly: analyzing the variables

SysCall Anomaly, proposed by Vigna et al.
Each syscall separately evaluated on 4 separated models

(maximum) string length

Character distribution

Structural inference

Token search

Each model is theoretically interesting, but
exhibits flaws in real-world situations
Structural inference

Realized as a markov model with no probabilities...

Too sensitive !

Token search
No “search”, really: you must predefine what is a token

Again, no probabilities

Our proposal

We evolved the models
Structural inference: abolished (halving false positives...)

Implemented a model for filesystem paths (depth –
structural similarities, e.g. elements in common)

Token Search: probabilistic model
UID/GID specialization, considering three categories:

superuser, system id, regular id

Now, we wanted to add
Correlation among the arguments of a single syscall

Hierarchical clustering algorithm to create classes of use

Correlation among system calls over time
First order Markov model (a Markov chain)

What is clustering ?

Clustering is the grouping of pattern vectors into
sets that maximize the intra-cluster similarity,
while minimizing the inter-cluster similarity

Here “pattern vectors” are the values of various
models

We used a hierarchical agglomerative algorithm
Pick up the two most similar items

Group them

Compute distance from the new group to other groups

Repeat

What is similarity?
Two patterns are similar if they are “close”
We had to define similarity for each model type

e.g. is /usr/local/lib similar to /usr/lib ? And to
/usr/local/doc ?

Results of clustering

The clustering process aggregates similar uses of
a same system call
E.g.: let us take the open syscalls in fdformat:

/usr/lib/libvolmgt.so.1, -rwxr-xr-x
/usr/lib/libintl.so.1, -rwxr-xr-x
/usr/lib/libc.so.1, -rwxr-xr-x
/usr/lib/libadm.so.1, -rwxr-xr-x
/usr/lib/libw.so.1, -rwxr-xr-x
/usr/lib/libdl.so.1, -rwxr-xr-x
/usr/lib/libelf.so.1, -rwxr-xr-x
/usr/platform/sun4u/lib/libc_psr.so.1, -rwxr-xr-x
/devices/pseudo/mm@0:zero, crw-rw-rw-
/devices/pseudo/vol@0:volctl, crw-rw-rw-
/usr/lib/locale/iso_8859_1/LC_CTYPE/ctype,-r-xr-xr-
x

Each of the clusters is a separate type of syscall
(e.g. “open_1”, “open_2”, “open_3”)

A matter of sequence

We can now build a Markov chain which uses as
states the clusters of syscalls, as opposed to the
syscalls per se

We can train the model easily on normal
program executions
Not static analysis, we would include bugs

At runtime we will have three “outlier
indicators”:
The likelihood of the sequence so far

The likelihood of this syscall in this position

The “similarity” of this syscall arguments to the best-
matching cluster

The first is an indicator of likely deviation of
program course, the others are punctual
indicators of an anomaly

So, why don't you have “results” ?!

See my presentation at BH Fed on why the
evaluation of intrusion detection systems is
mostly useless as of now

 I won't claim with you “False Positive Rates” or
“Detection Rates” that I cannot scientifically
back

 I can share with you two interesting results
Firstly, deviation is contextualixed, allowing the analyst
to trace it back to the point of entry

Secondly, abnormalities can be detected with a better
granularity because of the clustering on system calls

Conclusions & Future Work

Conclusions:
IDS are going to be needed as a complementary

defense paradigm (detection & reaction vs. prevention)
In order to detect unknown attacks, we need better

anomaly detection systems
We can successfully use unsupervised learning for

anomaly detection in an host based environment using
System call sequence

System call arguments

Future developments:
Integrating this to become an Intrusion Prevention

system, maybe using CORE FORCE ?
More extensive real-world evaluation on the go
Integration with our network based system

?Any question?Any question?

Thank you!Thank you!

I would greatly appreciate your feedback !

Stefano Zanero
zanero@elet.polimi.it

www.elet.polimi.it/upload/zanero/eng

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

